JVM堆(Heap)= 新生代(Young) + 旧生代(Tenured)
分区作用:
新创建的对象通常先将其分配在新生代中,在新生代中经过若干次GC之后仍未释放的对象,再将它移动到旧生代。为了让内存回收更高效(GC会暂停JVM中的应用),Sun JDK在1.2开始对堆采用了分代管理的方式。在分配对象遇到内存不足时,先对新生代进行GC(Young GC);当新生代GC之后仍无法满足内存空间分配需求时, 才会对整个堆空间以及方法区进行GC (Full GC)
相关参数:
注意点:
当新生代设置得太小时,也可能引发大对象直接分配到旧生代中。
新生代(Young)= Eden区 + Survivor区
分区作用:
Eden区为对象通常最初分配到的地方,Survivor区分为S0和S1两块大小相等的区域。JVM进行Minor GC时,将Eden中还存活的对象拷贝到Survivor区中,还会将Survivor区中还存活的对象拷贝到Tenured区中。在这种GC模式下,JVM为了提升GC效率, 将Survivor区分为S0和S1,这样就可以将对象回收和对象晋升分离开来。
相关参数:
注意点:
图中Virtual部分表示可伸缩的内存空间,当用-Xms在指定堆的初始大小为128m,通过-Xmx指定堆最大为256m时,JVM会根据内存情况在128m与256m之间伸缩。为了避免JVM进行这些伸缩消耗性能,对于能够提供稳定内存空间的用作服务器的JVM,通常将-Xms和-Xmx设置为相等。
分区作用:
也被成为持久代,用来存放JVM加载的类型信息。包括: 类型基本信息,常量池,字段信息,方法信息,类变量,指向ClassLoader的引用,Class类的引用,方法表等。方法区是全局共享的,在一定条件下也会被GC。
相关参数:
作用:
JVM方法栈为JVM线程私有内存,当方法运行完毕后,其对应的栈帧内存会自动释放
相关参数:
TLAB:
JVM所占用的主要内存都是从堆空间分配的,堆是所有线程共享的,因此在堆上分配内存需要加锁,Sun JDK为提升效率,会为每个新建的线程在Eden上分配一块独立的空间由该线程独享,这块空间称为TLAB(Thread Local Allocation Buffer)。其大小由JVM根据运行情况计算得到,也可通过参数-XX:TLABWasteTargetPercent来设置TLAB可占用的Eden空间的百分比,默认值为1%。在TLAB上分配内存不需要加锁,因此JVM在给线程中的对象分配内存时会尽量在TLAB上分配。如果对象过大或TLAB用完,则仍然在堆上进行分配。
收集器主要分为引用计数器和跟踪收集器两种,Sun JDK中采用跟踪收集器作为GC实现策略。
跟踪收集器采用集中式的管理方式,全局记录数据的引用状态。触发执行时需要从根节点来扫描对象的引用关系,可能会造成应用程序暂停。主要有三种实现算法:复制(Copying)、 标记-清除(Mark-Sweep)、 标记-压缩(Mark-Compact)。下文将简单介绍这三种算法的过程,有助于后续的GC策略理解和分析。
算法:复制采用的方式为从根集合扫描出存活的对象,并将找到的存活对象复制到一块新的完全未使用的空间中。
过程:
注意:红叉为不存活的对象所占用内存空间
算法:标记-清除采用的方式为从根集合开始扫描,对存活的对象进行标记,标记完毕后,再扫描整个空间中未标记的对象,并进行回收。
过程:
优缺点:在空间中存活对象较多的情况下较为高效,但由于该算法为直接回收不存活对象所占用的内存,因此会造成内存碎片。
算法:标记阶段与“标记-清除”算法相同,但在清除阶段有所不同。在回收不存活对象所占用的内存空间后,会将其他所有存活对象都往左端空闲的空间进行移动,并更新引用其对象指针。
过程:
优缺点:在“标记-清除”的基础上还需要进行对象移动,成本相对较高,好处则是不产生内存碎片。
图4 Sun JDK中可用的GC方式
基于上一小节讲解的跟踪收集器算法,Sun JDK在新生代和老生代进行了不同的算法实现,形成了上图中的GC方式分布。本小节将具体介绍新生代和老生带的GC策略及组合方式。
算法:复制(Copy)
过程:
算法:复制(Copy)
过程:在扫描和复制时均采用多线程方式进行(如下图),并且并行回收GC为大的新生代回收做了很多优化(可以自行扩展阅读相关资料)。
优势:在多CPU的机器上其GC耗时会比串行方式短,适合多CPU、对暂停时间要求较短的应用。
配置方式:本身是Server级别多CPU机器上的默认GC方式,也可以通过-XX:+UseParallelGC来指定,并且可以采用-XX:ParallelGCThread来指定线程数。
算法:复制(Copy)
过程:与并行回收GC(Parallel Scavenge)的区别在于并行GC(ParNew)必须配合老生代使用CMS GC。原因是CMS GC在进行老生代GC时,有些过程是并发执行的。如果此时发生了Minor GC,需要进行相应处理,而并行回收GC(Parallel Scavenge)是没有做这些处理的。也正是如此,ParNew GC不可与并行的老生代GC同时使用。
配置方式:在配置为CMS GC的情况下,新生代默认使用并行GC(ParNew)方式,也可以通过-XX:+UseParNewGC来指定。
算法:Mark-Sweep-Compact,该算法结合Mark-Sweep和Mark-Compact做了一些改进。
过程:
优缺点:串行执行的过程中为单线程,需要暂停应用并耗时较长。
配置方式:是client模式默认采用的GC方式,也可以通过-XX:UseSerialGC进行指定。
算法:Mark -Compact
过程:
优缺点:多线程同时操作以及dense prefix优化,会缩短应用暂停时间。但由于老生代较大,在扫描和标识对象上需要花费较长时间。
配置方式:通过-XX:+UseParallelGC来指定使用Parallel Mark Sweep;通过-XX:UseParallelOldGC来指定使用Parallel Compacting。
算法:Mark –Sweep
过程:
优缺点:如上图,优点是只有在第一次标记和重新标记阶段需要暂停整个应用,所以能够做到影响应用响应时间很短。缺点是并发标记和并发收集阶段CMS会与应用线程争用CPU资源(用增量CMS模式可以缓解),并且容易产生内存碎片,free-list机制会导致Minor GC效率下降。
配置方法:通过-XX:UseConcMarkSweepGC来启动老生代CMS GC;通过-XX:+UseCMSCompactAtFullCollection来启动内存碎片整理功能(整理也会暂停应用)。
新生代 | 旧生代和持久代 GC 方式 | |
Client | 串行 | 串行 |
Server | 并行回收 GC | Parallel Mark Sweep GC |
新生代 GC | 旧生代和持久代 GC | |
-XX:+UseSerialGC | 串行 GC | 串行 GC |
-XX:+UseParallelGC | 并行回收 GC | Parallel Mark Sweep GC |
-XX:+UseConcMarkSweepGC | 并行GC | 并发 GC 当出现 Concurrent Mode Failure 时采用串行 GC |
-XX:+UseParNewGC | 并行 GC | 串行 GC |
-XX:+UseParallelOldGC | 并行回收 GC | Parallel Mark Conpact |
-XX:+UseConcMarkSweepGC -XX:-UseParNewGC |
串行 GC | 并发 GC 当出现 Concurrent Mode Failure 或 Promotion Failed 时采用串行 GC |
不支持的组合方式 | 1.-XX:+UseParNewGC
-XX:+UseParallelOldGC 2.-XX:+UseParNewGC -XX:+UseSerialGC |